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Abstract
Experiments have suggested that the high-Tc cuprate YBCO shows marked anisotropy in
penetration depth and coherence length measurements. In order to take into account the
presence of this anisotropy in the system and its corresponding effect on the various properties
of the high-Tc superconducting materials, we have developed an anisotropic two-order
parameter Ginzburg–Landau (GL) theory involving a mixed symmetry state of the order
parameter components. For this we have generalized a two-order parameter GL theory, recently
developed for the isotropic high-Tc superconductors involving a mixed symmetry state of the
order parameter components (Karmakar and Dey 2008 J. Phys. Condens. Matter 20 255218), in
which the effect of the presence of in-plane anisotropy has been taken into account by an
effective mass approximation, with the anisotropy being characterized by the parameter
γ = mx/m y . The work goes beyond the limitations of the earlier studies in this field as it
enables us to carry out a detailed study of the various properties of the system over the entire
range of applied magnetic field and wide range of temperature for arbitrary values of the GL
parameter κy and vortex lattice symmetry. The model successfully explains not only the
observed oblique vortex lattice structure in the presence of in-plane anisotropy but also the
experimentally observed angle between the primitive axes of the vortex lattice. The generation
of two-fold symmetry of the vortices in the presence of in-plane anisotropy, for a very low
applied magnetic field can also be analyzed by our model. We have also compared our
theoretical results with various other experiments on high-Tc cuprate YBCO.

1. Introduction

A critical issue in the study of the properties of high-
Tc superconductors, is the pairing symmetry of the order
parameter components. Experimental observations have
predicted the possibility of a d-wave pairing symmetry, i.e. the
dx2−y2 pairing state with lines of nodes in the energy gap. The
possibility of a d-wave pairing symmetry has been predicted
by phase sensitive experiments such as Josephson junction
experiments, superconducting quantum interference device
(SQUID) measurements etc [2–5]. However, most recent
experiments [6–9] show the possibility of a mixed symmetry
state of the order parameter components, where the bulk

pairing symmetry is d-wave, along with the admixture of
a small s-wave component. Sigrist et al have shown that
a small s-wave component will be present in addition to a
dominant d-wave component in YBCO [10]. In fact many
of the inconsistencies of the observations of the experiments
supporting the presence of a d-wave pairing symmetry could
be explained by allowing for a mixed symmetry state of the
order parameter components and it is suggested that the mixed
symmetry scenario can prove to be the origin of several unusual
effects observed experimentally in HTS, namely the unusual
upward curvature of the plot of temperature versus the upper
critical magnetic field (Hc2) [11], the pseudo-gap effects in
HTS [12], the nonmagnetic impurity effects in HTS leading
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to an energy gap [13] and the superconducting fluctuation
effects in HTS [14]. For a detail account of the experimental
studies which supports the above mentioned scenarios, see [1].
The mixed symmetry pairing scenario has also been used
to explain the origin of fractional vortices in HTS [15, 16]
and the influence of the twin boundary in Josephson junction
tunneling [17].

The presence of a mixed symmetry state of the order
parameter components in high-Tc superconducting materials
has been attributed to the very complex structure of these
materials, particularly the existence of the CuO chains in the
system. The presence of the CuO chains and the resulting
orthorhombic distortion of the system gives rise to an in-
plane gap anisotropy in the system [18, 19]. Experimental
manifestations of this energy gap anisotropy have been
many. Whether it is the Raman scattering experiment of
YBa2Cu4O8 [20] and YBa2Cu3O7 [21, 22] or the photo-
emission spectra of YBa2Cu3O7−δ [18], all have supported the
existence of an energy gap anisotropy in the high-Tc cuprates.
Angle resolved electron tunneling measurements have also
indicated the presence of an in-plane anisotropy in the energy
gap of the order of�a/�b = 1.5 [6].

Apart from the in-plane anisotropy in the energy gap, there
are other properties of the high-Tc superconductors, namely
penetration depth, coherence length, vortex lattice structure
etc which demonstrate the presence of in-plane anisotropy.
Microwave surface impedance measurements have shown the
presence of in-plane anisotropy in the penetration depth [23]
with the anisotropy parameter γ determined to be equal to
γ = 2.4. The small angle neutron scattering (SANS) [24]
and scanning tunneling microscopy (STM) [25] measurements
carried out on high-Tc cuprates have indicated the presence
of an oblique structure of the flux line lattice suggesting the
presence of an anisotropy in the system. The vortex imaging
carried out by using STM measurements showed that the angle
between the primitive axes is β ≈ 77◦ ± 5◦, the vortex cores
have been found to be elongated, with the ratio of the axes
being 1.5. The corresponding ratio of the coherence lengths
as determined by the structure of the vortices amounts to 1.5
in agreement to the anisotropy determined by the penetration
depth measurements [23].

It must be noted that such an oblique vortex lattice
structure can be obtained by taking into consideration only
the mixed symmetry state of the order parameter components
even in the absence of an explicit in-plane anisotropy [1].
However, such an isotropic model fails to give the correct
value of the angle between the primitive axes of the lattice,
indicating that the mixed symmetry scenario alone cannot
explain the experimentally observed features of the high-Tc

cuprates. In the later sections where we discuss in detail the
vortex lattice structures and the local spatial behaviors of the
high-Tc cuprates, we show how the presence of an in-plane
anisotropy has to be taken into account along with the mixed
symmetry states of the order parameter components so as to
explain the experimentally observed features of the high-Tc

superconductors.
In the present work we have studied the properties of high

temperature superconductors in the states of mixed symmetry

of order parameter components, taking explicitly into account
the effect of in-plane anisotropy. The anisotropy considered
here is the electronic mass anisotropy (γ = mx/m y), which
is introduced in the formulation in the form of an effective
mass anisotropy tensor (Λ). As an approximation, we have
considered the effective electronic masses of the s and d-
components to be the same (i.e. m∗

s = m∗
d = m∗), though

in principle they are dependent on the corresponding Fermi
surfaces. The properties have been studied in detail over
the entire range of the magnetic field and wide range of
temperature. This allows us to study the experimentally
relevant intermediate field region (Hc1 � H � Hc2) which
shows an anomalous magnetic field dependence of the vortex
lattice [26]. Also the studies are done for arbitrary values of the
GL parameter κy and vortex lattice symmetry. Thus our study
goes much beyond the limitations of the earlier studies on HTS
using anisotropic GL theory [27]. In order to achieve this, we
have extended the two-order parameter GL theory developed
in a recent work [1] to take into account the effect of in-plane
anisotropy. The numerical iteration technique developed in [1]
enables us to solve the coupled nonlinear GL equations over
the entire range of the applied magnetic field and temperature
for arbitrary values of the GL parameter κy and vortex lattice
symmetry.

Here we consider the vortex lattice axes to be parallel to
the crystal symmetry axes of the lattice. The effect of the
CuO chains and the orthorhombic distortion of the system
has not been considered explicitly. As in the isotropic case,
the pairing symmetry of the order parameters is considered to
be (d + is) with the corresponding phase difference between
the order parameter components being π/2 [1]. We have
carried out a detail study of the local spatial behavior such
as the width and peak amplitude of the order parameters
and magnetic field induction, the structure of the single
vortex and vortex lattice structure, the shear modulus (c66)
of the vortex lattice etc and their variation with the mass
anisotropy parameter γ . The effect of the mass anisotropy
parameter γ on experimentally observable properties such as
the vortex core radius, penetration depth of the magnetic field,
superconducting current density, reversible magnetization etc,
are studied in detail and the results are compared with the
isotropic case and also with experimental data. In the following
sections we will present the results obtained by our anisotropic
two-order parameter GL theory, specially emphasizing the
effect of in-plane mass anisotropy.

The paper is organized as follows, in section 2 we
have discussed in detail the theoretical formalism, section 3
describes the numerical calculations involved in the work, the
results obtained and their analysis. Finally section 4 is devoted
to the conclusion drawn from the work done along with the
future prospects.

2. Theoretical formalism

The two-dimensional average GL free energy density for high-
Tc superconductors involving a mixed symmetry state of order
parameter components with in-plane mass anisotropy can be
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written as

f = 〈[αsωs − ωd + β1ω
2
s + β2ω

2
d + β3ωsωd

+ 2β4 cos(2φ)ωsωd + gs + ωsQΛQ

+ gd + ωdQΛQ + 2εv[cos(φ){((∇yωs)(∇yωd)

− (∇xωs)(∇xωd))/4κ
2
y(ωsωd)

1/2

+ (Q2
y − Q2

x)(ωsωd)
1/2} + sin(φ){[Qy(∇yωs)

− Qx(∇xωs)](ωd/4κ
2
yωs)

1/2 − [Qy(∇yωd)−Qx(∇xωd)]
× (ωs/4κ

2
yωd)

1/2}] + (∇ × Q)2]〉. (1)

The above dimensionless equation is obtained by scaling
with the parameter |αd|2/2β2. The parameters αs and βi (i =
1, 2, 3, 4) are positive quantities which are measured in terms
of reduced units as αs = αs/|αd| (where αs = α′(T − Ts)

and αd = α′(T − Td)) with Ts and Td being the critical
temperatures for s and d-wave order parameter components
respectively and βi = βi/2β2. The parameter values are
related to each other through various inequalities [1, 28, 29].
In the above equation, 〈. . .〉 = 1

V

∫
dr . . .. denotes the spatial

average, the dimensionless quantities, s = √
ωs exp[iφs],

d = √
ωd exp[iφd] gives the superconducting order parameters

with ωd = |d|2 � 1 and ωs = |s|2 � 1 and gi =
(∇ωiΛ∇ωi )/4κ2

yωi (with i = s, d). The gauge invariant
quantity Q(x, y) = A(x, y)− ∇φ(x, y)/κy gives the velocity
of the superconducting electrons and Λ denotes the anisotropic
mass tensor,

Λ =
(

m y/mx 0
0 1

)

(2)

where the effective masses of the s and d-type electrons are
considered to be the same i.e m∗

s = m∗
d = m∗. The magnetic

field is applied along the z-axis and is thus defined as B =
Bẑ. The parameter εv = m y/mv (where mv is defined as
γv = h̄2/2m∗

v [28]) serves as the coefficient of the mixed
gradient coupling term and gives the strength of the admixture
of the s-wave order parameter component. Thus, along with
the variation of the strength of the in-plane mass anisotropy
of the system through the parameter γ = mx/m y , we can
also control the strength of the admixture of the s-wave order
parameter component in the system. For γ = 1.0 (mx = m y)
we obviously return to the isotropic system [1]. For εv = 0,
the pure d-wave state is realized. The major contribution of
the s-wave order parameter component arises from the mixed
gradient coupling term.

Minimizing the free energy density functional w.r.t the
order parameters ωd and ωs and supervelocity Q as ∂ f/∂ωs =
∂ f/∂ωd = 0 and ∂ f/∂Q = 0 we get the corresponding GL
equations as

−∇Λ∇ωs = 2κ2
y [−αsωs − 2β1ω

2
s − β3ωsωd

− 2β4 cos(2φ)ωsωd − ωsQΛQ − gs − cos(φ)εv
× (Q2

y − Q2
x )(ωsωd)

1/2 − cos(φ)εv[(ωs/ωd)
1/2

× (∇x(∇xωd)− ∇y(∇yωd))/2κ
2
y ] − cos(φ)εv[(ωs/ωd)

1/2

× ((∇yωd)
2 − (∇xωd)

2)/4κ2
yωd] − 2 sin(φ)εv[(ωs/ωd)

1/2

× (Qx(∇xωd)− Qy(∇yωd))/2κy]] (3)

−∇Λ∇ωd = 2κ2
y [ωd − 2β2ω

2
d − β3ωsωd − 2β4 cos(2φ)ωsωd

− ωdQΛQ − gd − cos(φ)εv(Q
2
y − Q2

x)(ωsωd)
1/2

− cos(φ)εv[(ωd/ωs)
1/2(∇x(∇xωs)− ∇y(∇yωs))/2κ

2
y ]

− cos(φ)εv[(ωd/ωs)
1/2((∇yωs)

2 − (∇xωs)
2)/4κ2

yωs]
− 2 sin(φ)εv[(ωd/ωs)

1/2(Qy(∇yωs)− Qx(∇xωs))/2κy]]
(4)

−∇2Q = −(ωs + ωd)ΛQ − εv{2 cos(φ)(ωsωd)
1/2

× (ŷQy − x̂ Qx)+ sin(φ)[(ωd/4κ
2
yωs)

1/2

× (ŷ(∇yωs)− x̂(∇xωs))

− (ωs/4κ
2
yωd)

1/2(ŷ(∇yωd)− x̂(∇xωd))]} (5)

where φ = φd − φs is the phase difference between the d and
s-wave order parameters and κy is the GL parameter.

The nonlinear coupled two-order parameter GL equations
involving in-plane mass anisotropy are then solved over the
entire range of applied magnetic field for arbitrary values of
GL parameter κy and vortex lattice symmetry using a high
precision numerical iteration technique as developed in [1]. In
this numerical technique, the order parameters, magnetic field
and the supervelocity of the electrons are first expressed in
terms of the Fourier series [1, 30]. The corresponding Fourier
coefficients as

K, ad
K and bK are then determined numerically by

iterating the three iteration equations obtained from the three
GL equations. As mentioned in [1], two additional iteration
equations are also used for a stable and faster convergence of
the iteration process. The resulting five iteration equations for
the anisotropic two-order parameter system are given as

as
K := 2〈[(αs − c1s)ωs + 2β1ω

2
s + β3ωsωd

+ 2β4 cos(2φ)ωsωd + ωsQΛQ + gs + cos(φ)εv
× (Q2

y − Q2
x )(ωsωd)

1/2 + (ωs/ωd)
1/2

× {cos(φ)εv[(∇x(∇xωd)− ∇y(∇yωd))/2κ
2
y + gdy − gdx]

+ 2 sin(φ)εv(Qx∇xωd − Qy∇yωd)/2κy}]
× cos(K · r)〉/(KΛK/2κ2

y + c1s) (6)

as
K := as

K · 〈(c2s − αs)ωs − β3ωsωd − 2β4 cos(2φ)ωsωd

− ωsQΛQ − gs − cos(φ)εv(Q
2
y − Q2

x)(ωsωd)
1/2

− (ωs/ωd)
1/2{cos(φ)εv[(∇x(∇xωd)− ∇y(∇yωd))/2κ

2
y

+ gdy − gdx] + 2 sin(φ)εv(Qx∇xωd − Qy∇yωd)/2κy}〉
× 1/(2β1〈ω2

s 〉 + c2sω̄s) (7)

ad
K := 2〈[−(1 + c1d)ωd + 2β2ω

2
d + β3ωsωd

+ 2β4 cos(2φ)ωsωd + ωdQΛQ + gd + cos(φ)εv
× (Q2

y − Q2
x )(ωsωd)

1/2 + (ωd/ωs)
1/2

× {cos(φ)εv[(∇x(∇xωs)− ∇y(∇yωs))/2κ
2
y + gsy − gsx]

− 2 sin(φ)εv(Qx∇xωs − Qy∇yωs)/2κy}]
× cos(K · r)〉/(KΛK/2κ2

y + c1d) (8)

ad
K := ad

K.〈(c2d + 1)ωd − β3ωsωd − 2β4 cos(2φ)ωsωd

− ωdQΛQ − gd − cos(φ)εv(Q
2
y − Q2

x)(ωdωs)
1/2

− (ωd/ωs)
1/2{cos(φ)εv[(∇x(∇xωs)

− ∇y(∇yωs))/2κ
2
y + gsy − gsx ] − 2 sin(φ)εv(Qx∇xωs

− Qy∇yωs)/2κy}〉/(2β2〈ω2
d〉 + c2dω̄d) (9)

3
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bK := 2〈[−ωd B − Pd + (ω̄s + ω̄d)(B − B̄)− (ωs B + Ps)

− [2 cos(φ)εv{(ωsωd)
1/2(∇x Qy + γ∇y Qx)

+ (1/2)(ωs/ωd)
1/2[Qy∇xωd + Qxγ∇yωd]

+ (1/2)(ωd/ωs)
1/2[Qy∇xωs + Qxγ∇yωs]}]

+ (sin(φ)/2κy)εv{(1/2)((∇yωs)(∇xωd))(ωsωd)
−1/2

+ (1/2)((∇xωs)γ (∇yωd))(ωsωd)
−1/2

− (ωs/ωd)
1/2(∇x(∇yωd)+ ∇yγ (∇xωd)

− (1/2)(∇yωd)(∇xωd)/ωd − (1/2)(∇xωd)γ (∇yωd)/ωd)

+ (ωd/ωs)
1/2(∇x(∇yωs)+ ∇yγ (∇xωs)

− (1/2)((∇yωs)(∇xωs))/ωs − (1/2)((∇xωs)γ

× (∇yωs))/ωs)− (1/2)((∇yωd)(∇xωs))(ωsωd)
−1/2

− (1/2)((∇xωd)γ (∇yωs))(ωsωd)
−1/2}]

× cos(K · r)〉/[(mx/m y)KΛK + (ω̄d + ω̄s)}] (10)

where Pi = (∇ωi × Q) · ẑ and gi j = (∇ jωi )
2/4κ2

yωi (with
i = s, d and j = x, y). The convergence and stability of
the iteration method can be enhanced by the choice of the
constants cs. While the value of the constant c1s is determined
by an empirical relation c1s ≈ 8×103

(6/b)+50(1−b/4) , the constant
c2s and c2d are small positive quantities while c1d is chosen
to be 1. The iteration is started with the Abrikosov value for
the d-wave order parameter component (ad

K = aA
K), while for

the s-wave component, the initial value is chosen to be one
order of magnitude smaller than that of the d-wave. For a
given set of parameters, equations (6)–(10) are iterated till the
solution remains constant up to 15 digits. The solution of the
coupled nonlinear GL equations are thus obtained for the two-
order parameter GL theory in the presence of in-plane mass
anisotropy.

3. Numerical calculations, results and discussions

As mentioned above, the nonlinear coupled GL equations
involving two-order parameter components, magnetic field and
in-plane mass anisotropy characterized by the parameter γ are
solved by using a numerical iteration technique. The various
properties of the high-Tc material involving mixed symmetry
states of order parameter components are computed and the
effect of the presence of in-plane mass anisotropy on these
properties are studied for different values of the magnetic
induction parameter b (=B̄/Bc2) and temperature.

To obtain the vortex lattice structure, we begin by
minimizing the free energy density f (x2 = x1/2, y2) w.r.t the
vortex lattice parameter y2. The position of the vortices in the
flux line lattice is given by R = Rmn = (mx1 + nx2, ny2)

(m and n are integers). For a triangular vortex lattice, one
has x2 = x1/2, y2 = x1

√
3/2, while for the square vortex

lattice x2 = 0, y2 = x1. The lattice parameter y2 thus
characterizes the structure of the vortex lattice corresponding
to the most stable configuration (minimum free energy density)
for a particular choice of other parameters in the model.

Figure 1 shows the minimization of the free energy
density with the lattice parameter y2/x1 (x1 = 1.0). The
magnetic induction parameter b = B̄/Bc2 is chosen to be
b = 0.04, which corresponds to the experimental applied

Figure 1. Variation of free energy density with lattice parameter y2

(x1 = 1.0) for mass anisotropy parameter γ = 2.4. Other parameter
values used are, αs/|αd| = 0.5, β1/2β2 = β3/2β2 = 1.0,
β4/2β2 = 0.5, GL parameter κy = 72 and the phase difference
between the d and s-wave order parameter components is
φ = φd − φs = π/2. The inset shows the free energy density
minimization for different values of the mixed gradient coupling
parameter εv with γ = 2.4.

field of H = 5 T [24]. The GL parameter κy , is chosen
to be 72 as observed experimentally for high-Tc cuprate
YBa2Cu3O7−δ [26]. The value of the mass anisotropy
parameter γ is taken as 2.4, as observed experimentally
for high-Tc cuprate YBa2Cu3O7−δ [23]. The value of the
parameter εv is chosen as 0.1 (as in [1] where we have
shown that the best fit to the experimental data of high-
Tc cuprate YBa2Cu3O7−δ are obtained for εv = 0.1).
This is also consistent with the theoretical work carried out
by Feder et al [31], where they have studied the d-wave
superconductor involving an admixture of the s-wave order
parameter component by using two different models namely
the extended Hubbard model and the antiferromagnetic van
Hove model. They have found that both the models suggest
a gradient coupling coefficient of εv = γv/γd ≈ 0.1–0.4. The
result had also been found to be consistent with experimental
observations [24, 25] for YBCO flux line lattices. For the
anisotropic system, we have found that the value of y2 which
corresponds to the minimum of free energy remains same for
all values of the coefficient εv between 0.1 and 0.4. This
is shown in the inset of figure 1, where we have plotted the
variation of free energy with lattice parameter y2 for different
values of the coupling parameter εv and γ = 2.4. In
the remainder of this paper we take the value of the mixed
gradient coupling parameter εv = 0.1. As shown in figure 1,
the minimum free energy is obtained for y2 = 0.55 which
corresponds to the oblique lattice. For this value of y2 = 0.55,
the angle between the primitive axes is β ≈ 84.5◦ which is
quite close to the experimentally determined value of β =
77◦ ± 5◦ [24, 25] for the applied magnetic field of H =
5 T (b = 0.04). The difference between the experimental and
theoretical results can be attributed to the fact that in the present
work the chain structure of the high-Tc cuprates as well as the
resulting orthorhombic distortion of the system has not been
taken into account explicitly. It is appropriate to mention here
that for the isotropic case, as studied earlier by us [1] the value

4
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Figure 2. Contour plots of the order parameter components for different values of the mass anisotropy parameter γ . (a)–(c) corresponds to the
s-wave order parameter component ωs(x, y) while (d)–(f) corresponds to the d-wave order parameter component ωd(x, y) for
γ = 2.0, 3.0, 4.0, respectively. Other parameter values used are the same as in figure 1.

of the angle is β ≈ 97.3◦ which is far from the experimental
value of β ≈ 77◦±5◦. The observation justifies the fact that the
mixed symmetry scenario alone cannot explain all the observed
features of the high-Tc superconductors and the presence of in-
plane anisotropy has to be taken into consideration.

The change in the mass anisotropy parameter γ results in
a change in the vortex lattice structure, though the lattice in
general remains oblique. Figure 2 shows the contour plots
of ωs(x, y) and ωd(x, y) for different values of γ . The
vortex lattice structure remains in general oblique as mentioned
above, with the exact shape being dependent upon γ . We
have found that on varying γ as 2.0, 3.0, 4.0, 5.0, 6.0 etc
(for εv = 0.1), the stable lattice configuration is obtained for
y2 = 0.51, 0.63, 0.71, 0.82, 0.86 respectively.

A closer observation of the single vortex structure
indicates a four-fold structure of the s-wave order parameter
component ωs(x, y), characteristic of the mixed symmetry
scenario, with the exact shape being dependent on the
mass anisotropy parameter γ . The d-wave order parameter
component ωd(x, y) also shows dependence on the mass
anisotropy parameter γ , which leads to an elongated shape
of its vortex structure, in agreement with experiment [25].
The ratio of the axes of this elliptic vortex structure is
found to be ≈1.4 for the experimental applied field of
H = 5 T (b = 0.04). The observation is in accordance
with the coherence length anisotropy determined by STM
measurements of YBCO [25].

Before concluding the section we would like to mention
that for very low magnetic fields (i.e. for the single vortex
solution) the structure of the s-wave vortex changes from four-
fold to two-fold symmetry. The d-wave solution also shows
tapering at both ends indicating a two-fold symmetry. Such
a two-fold symmetric state has also been observed by Xu
et al [27] in their study of anisotropic d-wave superconductors.
It should be mentioned that the two-fold symmetry is not
observed for the isotropic case [1], thereby suggesting that its

origin may be due to anisotropy in the system. The effect of
anisotropy becomes clearer from the observation that for any
particular applied magnetic field, the two-fold symmetry of the
single vortex structure gets enhanced with an increase in mass
anisotropy parameter γ . Figure 3 shows such a situation where
we have plotted the single vortex solution of the s and d-wave
order parameter components for three different values of in-
plane anisotropy parameter γ .

The effect of the presence of in-plane mass anisotropy in
the system is also observed in the magnetic field profile B(x, y)
as shown in figure 4. The flux line lattice is again oblique
with the exact shape being determined by the value of the mass
anisotropy parameter γ .

We now calculate the local spatial behaviors of the order
parameters and magnetic field profiles, which are important
quantities since they give an insight to the two length scales
of the superconducting systems, namely the vortex core radius
and the penetration depth [1]. In figure 5 we have shown the
variation of the combined vortex core radius (calculated along
the x-direction and denoted by rx(b)) of the d and s-wave order
parameter components for arbitrary values of the magnetic
field induction b. For a given value of the mass anisotropy
parameter γ the vortex core radius decreases with an increase
in the magnetic field induction indicating the shrinkage of the
vortex core at higher magnetic fields. This is also in agreement
with the experimental observation for high-Tc superconducting
cuprates, as shown in inset (a) of the figure [32, 33]. Inset (b)
shows the variation of vortex core radius (ry(b)), calculated
along the y-direction, with magnetic field induction b. As can
be seen from the figure, the vortex core radius measured along
the y-direction has a larger magnitude than that measured
along the x-direction, thereby showing it is anisotropic.

Figure 6 shows the variation of the peak amplitude of
ωd(x, 0) and ωs(x, 0) with the magnetic field induction b. It
is seen that for an increase in the anisotropy parameter γ , the
peak amplitude of the order parameter components increases

5
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Figure 3. Single vortex solution for the order parameter components for different values of mass anisotropy parameter γ and magnetic field
induction b = 0.01. (a)–(c) corresponds to ωs(x, y), while (d)–(f) corresponds to ωd(x, y) for γ = 3.0, 5.0, 8.0, respectively. Other
parameter values are the same as figure 1. With an increase in the mass anisotropy parameter γ the vortex structure becomes more and more
two-fold symmetric.

Figure 4. Contour plots of magnetic field B(x, y) for mass anisotropy parameter γ = 2.0, 3.0, 4.0, respectively. Other parameter values are
the same as in figure 1.

for both the order parameter components. However, as in
the isotropic case [1], the overall amplitude of the s-wave
order parameter component remains very small as compared
to the d-wave order parameter component. Figure 7 shows the
temperature dependence of the vortex core radius calculated
along the x-direction for various values of the mass anisotropy
parameter γ . For a given value of the parameter γ , the vortex
core size increases with an increase in temperature. The inset
of the figure shows the temperature dependence of the vortex
core radius calculated along the y-direction for different values
of the mass anisotropy parameter γ . The magnitude of the
core radius measured along the y-direction is again found to
be more than that along the x-direction.

Figure 8 shows the temperature dependence of the
calculated vortex core radius (along y-direction) for mass
anisotropy parameter γ = 2.4 and magnetic field induction
b = 0.004 (H = 0.5 T) and comparison with the experimental
data for high-Tc cuprate YBa2Cu3O7−δ [33]. The match
between the experimental and theoretical results is found to
be fairly good. Figure 9 shows the variation of the width of the
magnetic field profile B(x, 0)with the magnetic field induction
b for different values of the mass anisotropy parameter γ .
As mentioned before, the width of the magnetic field profile

gives a measure of the penetration depth of the system and
it can be seen from the figure that for a given value of the
mass anisotropy parameter γ , the penetration depth increases
with an increase in the magnetic field induction b as expected.
This is in agreement with the experimentally observed behavior
of YBa2Cu3O7−δ (inset (a)) [33]. Similar behavior is seen
for B(0, y) (inset (b)). Figure 10 shows the temperature
dependence of the penetration depth of the magnetic field
profile B(x, 0) (calculated along the x-direction and denoted
as λx(T )) for different values of the mass anisotropy parameter
γ . For a given value of the parameter γ , the penetration depth
increases with an increase in the temperature, an observation
in agreement with the experimental results [34]. The inset of
the figure shows the temperature dependence of penetration
depth of the magnetic field profile B(0, y) calculated along
the y-direction and denoted as λy(T ). Figure 11 shows the
temperature dependence of the penetration depth calculated
for the mass anisotropy parameter γ = 2.4 and magnetic
field induction b = 0.004 (H = 0.5 T) and compared with
the experimental data for YBa2Cu3O7−δ [34]. The match
between the results has been found to be fairly good. The
theoretical calculations in this case were carried out along
the y-direction. As seen in figures 9 and 10, the penetration
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Figure 5. Variation of the vortex core radius (rx(b)) calculated along
the x-direction with magnetic field induction b for different values of
the mass anisotropy parameter γ . Other parameters are the same as
in figure 1. Inset (a) shows the experimental data for the magnetic
field dependence of the vortex core radius of the high-Tc

superconductor YBa2Cu3O7−δ [33]. Inset (b) of the figure shows the
magnetic field dependence of the vortex core radius (ry(b))
calculated along the y-direction by our theoretical model for different
values of the mass anisotropy parameter γ .

Figure 6. Variation of peak amplitude of the order parameters
ωd(x, 0) and ωs(x, 0) with magnetic field induction b for different
values of the mass anisotropy parameter γ . Other parameters are the
same as figure 1.

depth measured along the y-direction (λy(T )) exceeds that
along the x-direction (λx(T )) indicating an anisotropy in
the penetration depth. This observation indicates a larger

Figure 7. Variation of the vortex core radius (rx(T )) calculated along
the x-direction, with temperature T/Td, for different values of the
mass anisotropy parameter γ . The inset of the figure shows the same
quantity calculated along the y-direction. Other parameters are the
same as in figure 1, with T/Ts = 0.5.

Figure 8. Temperature dependence of the vortex core radius. The
solid line gives the results calculated theoretically by our anisotropic
two-order parameter model for the in-plane anisotropy parameter
γ = 2.4 and magnetic field induction b = 0.004 (H = 0.5 T). Other
parameter values used for the theoretical calculation are the same as
in figure 1 with T/Ts = 0.5. The dots give the experimental data for
high-Tc cuprate YBa2Cu3O7−δ [33].

supercurrent response along the y-direction as compared to that
along the x-direction.

Figure 12 shows the current density profile | j (x, 0)|
plotted along the x-direction for different values of the
magnetic field induction b. It can be seen that the magnitude
of the current density increases with a decrease in the magnetic
field induction b. The position of the maxima of current
also gives a measure of the core radius [33]. This is shown
in the inset of figure 12. In-plane mass anisotropy also
shows a pronounced effect on the current profile. Figure 13
shows the variation of the current profile with mass anisotropy
parameter γ . Figure 14 shows the plots of the components
of average current densities along the x and y-directions for
the experimentally relevant magnetic field induction of b =
0.004 (H = 0.5 T). The difference in their magnitude
at any temperature shows the effect of the anisotropy. In
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Figure 9. Variation of the width of the magnetic field profile
(B(x, 0)) calculated along the x-direction with magnetic field
induction b for different values of the mass anisotropy parameter γ .
Inset (b) shows the width for magnetic field profile (B(0, y)). Other
parameters are the same as in figure 1. Inset (a) shows the
experimental data for the magnetic field dependence of the
penetration depth of the high-Tc superconductor YBa2Cu3O7−δ [33].

Figure 10. Variation of the penetration depth (λx(T )) calculated
along the x-direction, with temperature T/Td for different values of
the mass anisotropy parameter γ . The inset of the figure shows the
same quantity calculated along the y-direction. Other parameters are
the same as in figure 1, with T/Ts = 0.5.

figure 15 we have plotted the calculated current density with
the experimental data for YBCO [35]. Since the experiment
is at zero applied magnetic field we have carried out our
calculations for a very small magnetic field induction b =
0.004 (H = 0.5 T). The behavior is qualitatively the same,
the exact numerical values cannot however be compared since
the experimental data is for thin films and we have also not
taken the pinning mechanism into consideration.

Another quantity which we can calculate from our model
and compare with experiment is the reversible magnetization.
The reversible magnetization is defined as, M = B̄ − Ba,
where Ba is the applied magnetic field and can be defined as
Ba = 4π(∂ f/∂ B̄). However, as we have shown earlier, the
cumbersome process of taking the numerical derivative can be
avoided by making use of the virial theorem [36]. We use

Figure 11. Temperature dependence of the penetration depth. The
solid line gives the results calculated theoretically by our anisotropic
two-order parameter model for the in-plane anisotropy parameter
γ = 2.4 and magnetic field induction b = 0.004 (H = 0.5 T). Other
parameter values used for the theoretical calculation are the same as
in figure 1 with T/Ts = 0.5. The dots give the experimental data for
the high-Tc cuprate YBa2Cu3O7−δ [34].

Figure 12. Supercurrent profile for different values of the magnetic
field induction (b = 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)
for a particular value of the mass anisotropy parameter γ = 3.0.
Other parameters are the same as in figure 1. The inset shows the
magnetic field dependence of the vortex core radius as calculated
from the supercurrent profile.

the same method to calculate the reversible magnetization for
the anisotropic case also. Figure 16 shows the comparison
between the calculated reversible magnetization for γ = 2.4
with experimental data for YBa2Cu3O7−δ [26]. As can be
seen from the figure, the match between the experimental and
the calculated results is fairly good. The variation of the
reversible magnetization with increasing anisotropy shows an
almost similar behavior for all magnetic induction parameter
values b except at lower induction where the difference can be
seen more clearly. This is shown in the inset of figure 16.

We next consider the shear modulus of the vortex lattice
(c66), which is a numerically computable quantity, and gives
the stiffness (hardness) of the vortex lattice against thermal
instabilities. For the anisotropic case the shear modulus, which
depends upon the difference of the free energy density between
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Figure 13. Supercurrent profile for different values of the mass
anisotropy parameter γ (γ = 2.0, 3.0, 4.0, 5.0) for the magnetic field
induction b = 0.5. Other parameters are the same as in figure 1.

Figure 14. Temperature dependence of the different components of
the superconducting current density calculated for the in-plane mass
anisotropy parameter γ = 2.4. The magnetic field induction is
b = 0.004 and the other parameters are the same as in figure 1, with
T/Ts = 0.5.

a rectangular and an oblique flux line lattice, is given by the
relation [37]

c66 = 2π2[y2(γ )/x1]2 × [ f (x2 = 0, y2(γ ))

− f (x2 = x1/2, y2(γ ))] (11)

where y2(γ ) denotes the anisotropy parameter dependent value
of unit cell height which corresponds to the minimum free
energy density for the vortex lattice of a given symmetry.
Figure 17 shows the variation of the peak amplitude of the
shear modulus of the vortex lattice, while figure 18 shows
the variation of the peak position (bpeak), i.e. the value of
the magnetic induction b at which the c66 value becomes
maximum, with the mass anisotropy parameter γ . As has been
mentioned in [1] the peak amplitude and the peak position
are important quantities, the peak amplitude determines the
hardness i.e. the stability of the vortex lattice, while the peak
position (bpeak) denotes the magnetic field induction at the peak
amplitude. With an increase of mass anisotropy parameter
γ , the peak amplitude increases whereas the peak position

Figure 15. Comparison of the temperature dependence of current
density calculated by our anisotropic two-order parameter GL theory
for mass anisotropy parameter γ = 2.4 and b = 0.004 with the
experimental data for a YBa2Cu3O7−δ thin film [35].

Figure 16. Comparison of the reversible magnetization results
calculated by our anisotropic two-order parameter GL theory for
mass anisotropy parameter γ = 2.4 with the corresponding
experimental data for the high-Tc cuprate YBa2Cu3O7−δ [26]. The
inset of the figure shows the variation of reversible magnetization for
different values of mass anisotropy parameter γ .

decreases. The figures show that the presence of in-plane mass
anisotropy in the system tends to harden the vortex lattice.
In other words, the in-plane mass anisotropy does not favor
the melting of the flux line lattice, an observation contrary to
the popular belief that the presence of mass anisotropy leads
to the softening of the vortex lattice. This is an important
observation and in order to correlate it with the experimental
results, experiments which can probe the melting of the vortex
lattice as a function of increasing in-plane anisotropy should
be carried out. Here it must be mentioned that for an isotropic
two-order parameter system [1], an increase in the admixture of
the s-wave order parameter component in the system decreases
the shear modulus of the vortex lattice, indicating that melting
is favored in high-Tc superconducting cuprates. However, once
in-plane anisotropy is introduced into the system, the effect
of the admixture of s-wave order parameter component in the
system is suppressed by the effect of in-plane anisotropy and
the flux line lattice gets hardened with increasing anisotropy,
thus resisting its melting.
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Figure 17. Variation of the peak amplitude of the shear modulus
(c66) of the vortex lattice with different values of the mass anisotropy
parameter γ . Other parameters are the same as in figure 1.

Figure 18. Variation of the peak position (bpeak) of c66 with different
values of the mass anisotropy parameter γ . Other parameters are the
same as in figure 1.

The effect of temperature on the shear modulus of the
vortex lattice has also been studied for different values of
the mass anisotropy parameter (γ ) and the results are shown
in figure 19. As can be seen from the figure, an increase
in the mass anisotropy enhances the shear modulus of the
vortex lattice. For any particular value of the mass anisotropy
parameter γ , the shear modulus of the vortex lattice decreases
with an increase in the temperature indicating that the melting
of the vortex lattice is favored at high temperature.

4. Conclusion

In conclusion, we have presented a detailed systematic
study of the properties of anisotropic high temperature
superconductors in the states of mixed symmetry of order
parameter components. The study is carried out in the
framework of an anisotropic two-order parameter GL theory
and the effect of in-plane anisotropy is taken into account by

Figure 19. Temperature dependence of the shear modulus (c66) of
the vortex lattice for different values of the mass anisotropy
parameter γ with magnetic field induction b = 0.3. Other parameters
are the same as in figure 1.

an effective mass approximation, which is characterized by the
mass anisotropy parameter γ . The main focus of the study has
been on the effect of the in-plane mass anisotropy parameter
γ on the various properties of the high-Tc superconductors,
over the entire range of magnetic field induction b and a
wide range of temperature, for arbitrary values of the GL
parameter κy and vortex lattice symmetry. The results show
the marked effect of the presence of in-plane mass anisotropy
when compared to those obtained in the isotropic case [1]. We
have found that the presence of in-plane anisotropy gives rise
to an oblique vortex lattice structure with the angle between
the primitive axes of the lattice being β ≈ 85◦ for the
experimentally determined mass anisotropy parameter γ =
2.4. The result is in good agreement with the experimental
observations of β ≈ 77◦ ± 5◦ [24, 25]. The small difference in
the experimental and theoretically calculated results arises due
to the fact that in the present work the chain structure and the
resulting orthorhombic distortion of the system has not been
taken into account explicitly. Moreover, the three-dimensional
nature of the system has not been taken into consideration.
The anisotropy in the coherence length of the system, as
obtained from the structure of the vortices (d-wave), amounts
to a value of ≈1.5, which again satisfies the STM results of
YBCO [25]. For lower values of the magnetic field induction
b (i.e. for the single vortex limit) the structure of the vortices
of the s-wave order parameter component changes from four-
fold to two-fold. For very low induction b, the d-wave order
parameter component also shows two-fold symmetry. Such an
observation has not been found in the isotropic case and can
thus be attributed to the presence of in-plane anisotropy in the
system. It must be noted that such a two-fold symmetry of
the vortex structure has been observed by Xu et al [27] also.
However, in their work they have explicitly taken into account
the presence of orthorhombic distortion in the system. In the
present work we have shown that such a two-fold symmetry
will arise from the anisotropic effect due to the effective mass
approximation, even in the absence of an explicit orthorhombic
distortion term being taken into account in the formalism.
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We have also calculated other relevant properties of the
high-Tc superconductor in the states of mixed symmetry,
namely the local spatial behaviors such as, the vortex core
radius and penetration depth of the system, the reversible
magnetization, the shear modulus of the vortex lattice, the
superconducting current etc, and have shown the effect of in-
plane mass anisotropy on these properties. We have compared
our results with those obtained from the isotropic model and
the effect of the in-plane anisotropy is clearly very evident
in each case. Comparison of the results with experimental
data for the high-Tc cuprate YBa2Cu3O7−δ shows fairly good
agreement. The shear modulus of the vortex lattice and its
variation with the magnetic field induction and temperature
shows that an increase in the in-plane mass anisotropy in the
system does not favor melting of the vortex lattice. More
experiments on the melting of the vortex lattice are required
to verify this observation.

Before we conclude, we would like to mention that
in the present work we have not considered the effect of
thermodynamic fluctuation and the variation of the hole
concentration on the properties of high-Tc superconductors. In
case of high-Tc superconductors, thermodynamic fluctuations
are known to be of immense importance. The effect of the
fluctuations can be taken into account by considering higher-
order terms in the free energy functional as suggested by
Ginzburg [38] for a single-order parameter (s-wave) GL theory.
This can be generalized to the anisotropic two-order parameter
case considered in this paper. Also an interesting problem
would be to study the high-Tc cuprates by taking into account
the orthorhombic distortion of the system. The presence of
orthorhombic distortion gives rise to anisotropic effects even in
the isotropic systems. So it would be of interest to understand
the effect that will arise in the system in the presence of both
orthorhombic distortions and the anisotropy introduced by the
effective mass approximation. The orthorhombic distortion
of the system can be taken into account by introducing
suitable second-order coupling terms (i.e. ψ∗

dψs + ψ∗
s ψd) in

the free energy functional [39]. The method discussed in the
present work can prove to be useful for the study of other
multicomponent materials. The work can also be generalized
to study thin films, which will give a more realistic picture of
practical high-Tc superconducting materials.
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